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On Skew-Symmetric Splitting and Entropy Conservation
Schemesfor the Euler Equations

Bjorn Sjogreen and H. C. Yee

Abstract The Tadmor type of entropy conservation formulation for Bader equations and various skew-
symmetric splittings of the inviscid flux derivatives araclissed. Numerical stability of high order central and
Padé type (centered compact) spatial discretizationhaeeed through the application of these formulations.
Numerical test on a 2-D vortex convection problem indicéles the stability and accuracy of these formula-
tions using the same high order central spatial discrétizatre similar for vortex travel up to a few periods.
For two to three times longer time integrations, their cep@nding stability and accuracy behaviors are very
different. The goal of this work is to improve treatment ofifinear instabilities and to minimize the use of nu-
merical dissipation in numerical simulations of shockefommpressible turbulence and turbulence with shocks

1 Introduction

Many high resolution numerical schemes for the simulatibtudoulence with shocks consist of employing
primarily a high order accurate central or Padé (centemdpact) spatial discretization in the entire compu-
tational domain, and activating a shock-capturing schémmugh a flow sensor only in the neighborhood of
shocks and in the regions of spurious high frequency osioifia. One example is the filter schemes developed
in[16, 17, 9, 8, 14]. The objective of this paper is to invgate the stability and accuracy behavior of high order
spatial central schemes in conjunction with the use of thiewa skew-symmetric splittings of the inviscid flux
derivative or the Tadmor type of entropy conservation folatian for the Euler equations. The flow solutions
studied here will therefore be assumed to have a smooth@olut

Due to nonlinear instabilities, solving highly coupled tinear conservation laws by spatial centered dif-
ference or Padé approximations does not usually lead taldestethod, even when the solution is smooth.
Ways to stabilize such methods are to add high order nunieligsipation, or to employ a high pass filter to
the solution after each time step. However, in long timegradons and compressible turbulent simulations
even small amounts of numerical dissipation can be ampldiext time, leading to, e.g., smearing of turbu-
lence fluctuations to un-recognizable forms. An approacmittimize the use of numerical dissipation is to
apply these schemes to the split form of the flux derivatiseésiprove nonlinear stability of the simulation. To
understand how this works, consider the the scalar Burgepsationu; + f, = 0 with f = u2/2. The flux
derivative can be split into the equivalent forin = %fm + %% %. For simplicity of discussion, we discretize
the split form by a second-order central scheme
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The grid is uniform,z; = (j — 1) Az, with grid spacingAz, andu;(t) is an approximation of the solution
u(x,t), at the grid pointz;. The centered difference operatorlpu; = (u;41 — uj—1)/2Ax. Linearization
of (1) around a smooth and bounded solutigi) leads to the equation

d 1 . 1. 1 N
%(ij + §€jDOU,j + §UjD0€j + §D0’U,j6j =0

for the small perturbation;. In the scalar product:, v), = Az ), u;v; and norm|ul|? = (u,u),, we obtain
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The summation by parts property, Dov);, = —(Dou,v);, eliminates the last two terms to give
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for a constantC' that depends on the maximum spatial derivativéio6ronwall's lemma gives the standard
well-posedness estimate,
lef] < K"

for constantds; andK». Consequently, the linearization of (1)iig stable. Strang’s theorem, see [7], states that
if the solution is smooth, and if the methodih order accurate and smooth, and hag.astable linearization,
then the numerical solution converges wjith order convergence rate. We have thus proved that the split
method (1) is convergent as long as no shocks form.

However, because the convergence is up to a fixed time asithes gefined, it does not necessarily imply
that the method is suitable for long time integration. Ferthore, other splittings are possible with different
weights on the conservative and non-conservative term$)ith@t do not directly lead to a well-posedness
estimate, but turned out to work equally well in numericgbesiments. In the absence of better mathematical
tools, numerical investigations to assess various passifiiemes will be necessary.

In our previous work, non-conservative entropy splittidg] turned out to be stable and accurate, but when
mixed with shock capturing schemes, non-conservativetsffeometimes make shocks move with incorrect
speeds. As conservative alternatives to entropy splitiveywill consider here the skew-symmetric splitting
of Ducros et al. [2, 3] and the entropy conservative formalabf Tadmor [11, 12]. Section 2 describes these
methods for the Euler equations of compressible gas dyrsar8ection 3 reports results from numerical ex-
periments comparing the entropy split scheme, the skeivsghleme, and the entropy conserving scheme. The
discussion concentrates of high order central schemeg.tiypéd of spatial discretizations will not be discussed
due to lack of space.

2 Non-dissipative schemes

For ease of presentation we will describe non-dissipatihesies applied to the compressible Euler equations
in one space dimension. The generalization to three spavendions is straightforward. The Euler equations
are

u + f(u), =0, (2)

whereu = (p, pu, €) andf(u) = (pu, pu®+p, u(e+p)). The dependent variables are dengitynomentum
pu, and total energy. The pressureig = (v —1)(e — %qu), wherey is a given constant. The computational
domain isO0 < x < L, with periodic boundary conditions at= 0 andz = L. u is assumed to be given at
the initial time. The grid points:; = (j — 1)Axz, j = 1,..., N, whereAz = L/(N — 1), discretizes the



computational domain. Undivided difference operatorsdegrotedA u; = w11 — uj, Aou; = (ujp1 —
’Ll,jfl)/Q, andA,uj = (Uj — Ujfl)

2.1 Skew-symmetric splitting

Splitting of the derivative of a product in conservative arah-conservative part is done by application of the
formula

1 1 1
(ab), = §(ab)m + Eabw + anb, 3

before discretization. An interesting property is that #pdit approximation can be written on conservative
form,

1
5 4D+(aj +aj_1)(bj +bj_1), (4)

whereD u; = (uj11 — uj)/Ax. (4) can be generalized to arbitrary orders of accuracyafd¢bcond order
operatorDy is replaced by thépth order accurate

1
Dy(ab); + a]Dob + - b iDoa; =

p
Dopu; =Y o Do (k)u;. (5)

The expanded operators are defined as
Do(k)u; = (ujsr — uj—r)/(2kAz)

and the coefficients satisfy

P p
k=1 k=1

For details see Ducros et al. [2]. Their key idea is to gemega splitting that leads to kinetic energy conser-
vation for the incompressible flow equations, to comprdsgibws.

There are many different ways that (3) can be used for theregleations. Different splittings are obtained
from different ways to write the fluxes as products of two ¢ast and it is possible to apply splitting to only
some of the equations. In the numerical investigationsntedan [5], one of the best performing splittings for
(2) was (here displayed with second order accuracy)

d 1
—p; + Dopjuj—i- pJDouj+2ujD0pJ—0

dt 2
d 1 1 1
= (Pw); + 5 Dopjuj + 5pju;Dou + 55 Dopjug + Dops = 0 ()
d 1 1 1
P + Douj(ej +p;) + QUJDO(ej +p;) + §(ej +p;)Dou; = 0.

In three space dimensions the recipe for (7) is to apply (éatth of the two products in the general three dimen-
sional fluxf = u,u + pe, whereu,, is the velocity normal to the cell interface, aad= (0, k1, ko, ks, un),
with (k1, k2, k3) being the cell interface normal.

See [4] for a comparison of splitting methods with differémtmulations of the energy equation. For a
heuristic discussion on aliasing errors for split approaiions, see [1].

The homogeneity of the Euler fluxes means tfat) = A(u)u, where A(u) is the Jacobian of (u). A
natural splitting would therefore be
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which is of a form that is more suitable for the norm estimatéhhique described in Sec. 1 for a scalar problem.

2.2 Entropy conserving schemes

Entropy conserving schemes were introduced in in the 1988s. e.g., [11]. These schemes are in conservation
form, and admit a discrete conservation law for the entrépyentropy,£(u), and an entropy flu¥'(u) are
two functions satisfying

ELA(u) = FT.

Here, E,, denotes the gradient @f with respect tou. FurthermoreF(u) is assumed to be a convex function.
The entropy variables are defined by= E, (u). Multiplying (2) by v7 gives the entropy equation

viu +vi Au, = E(u); + Flu, = E(u); + F(u), = 0.

The entropy flux potential, defined by
Yp=vf—F

has the property thdt= ...
The following construction defines a high order entropy esuaation scheme.

Theorem 1. The semi-discrete approximation of a system of conservégios given by

d Zp o k)
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where (k) tisfi
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(Virn = Vi) 85 0s = ik — ¥ (10)

and where théth flux differences approximate the flux derivative to secandér with a truncation error of
even powers df Az,

gy — W = BACE, + K2 Aoy + K Adtdy + . (12)
is 2pth order accurate, and admits a discrete entropy equation
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whereHJ(_’?k/2 = 2((vVjtn + vj)ng(.’_?k/2 — (¥j+1 +15)). Both (9) and (12) can be cast in conservation form,

because
k—1

Ajpk/2 — Aj_kj2 = A+(Z aj_/24m)
m=0

for any arbitrary grid functiona; ;. /» that satisfiesi; /o = a;_5/2-

Proof. Multiply (9) by v to obtain
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Rewrite each flux difference as
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and use (10) to conclude that
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Itis clear from (13) that the entropy conservation (12)dals.
It remains to prove that the order of accuracgjis Assumption (11) gives
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(6) gives
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showing that the order of accuracy2s. .

This scheme was also described, although not implememt¢ti)].

For a scalar conservation law the simple chcyéfé = (Yj4r — ¥;)/(vj+r — v;) satisfies both (10) and
(11). For the one dimensional Euler system [15 13] definebpy conserving fluxes based on integration
in phase space. Here, we instead wiijteas a function of the entropy variables and determine funstig
consistent with the gradient @f and satisfying

(Vjrr —¥5) = p1((v1)j+x — (V1)) + -+ @3((v3) 45 — (v3);)-

The definitiong(.’i)k/2
the entropyE (u) = 2 (pp) T , which has the entropy flux potential (for explicit express for the entropy

variables, see [15] orfl3])

= (p1, <p2, 3) determines an entropy conservative method. As an examphsjder
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Denoteq = (y — 1)(v1v3 — v3/2), and perform the expansion by repeated use of the rule
Aab = aAb + bAa

whereAa denotesy;; — a; anda denotega, 1, + a;)/2. The expansion becomes,
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DenotingQ = 2= —%__ (4 — 1), the final expression becomes
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It is possible to obtain the numerical flux function in startheariables by transforming back from entropy
variables. For example, the mass flux for the second orddroddk = 1) becomes

Uy T
—an:up(pp ) Q.

The difference quotien) tends tOppﬁ when Aq becomes small. Therefore, this flux is consistent. For
comparison, the mass flux in (7) is
up.
Therefore, apart from the fact@p, the entropy conservative scheme can be interpreted agtingpiethod.
By redefining@ aSpp%, the entropy conservative scheme would become a split sghieat then perfect

entropy conservation would no longer be certain.
3 Numerical experiments

The isentropic vortex convection problem for the two dimenal Euler equations has initial data

(y—1)8?

2 1

p=(1- 8ym? el =)

o L
w1 Py —w) 15

21

— 77‘2
oo P —z0) 222

2
p=p"

wherer? = (x — 20)% + (v — y0)2, (0, yo) is the center of the vortex, anglis the strength of the vortex. The
exact solution consists of the initial data translated wétocity one in thec-direction. We solve the isentropic
vortex convection problem on the computational dontaid z < 18,0 < y < 18 with periodic boundaries.
The strength and center of the vortex ate= 5 and (z0,10) = (9,9), respectively. The grid spacing is
Az = Ay = 0.25. All computations use eighth order accurate spatial diszaons with fourth order Runge-
Kutta in time. Figure 1 displays a comparison of the norm @f flolution error vs. time for five different
methods. The final time of the computation is 180, which gpomds to 10 periods of vortex convection.
DO8ES (blue line) denotes the non-conservative entrogstiagl of Olsson and Oliger [6, 15] with splitting
parameterd = 2, DO8SS (red line) denotes the Ducros et al. split schemeDU8EC (black line) denotes
the Tadmor-like entropy conservative scheme implemensedieacribed in Sect. 2, D08 (green line) denotes
the pure centered scheme, and DO8CS (light blue line) dsrléenatural split scheme (8). All schemes have
small errors during the first period. The purely centered-apimation, D08, breaks down due to the non-linear
instability at a very early time. After two periods DOSEC ftae smallest error. The error grows to become
large after three periods for DOSEC, and after around fivexgeriods for the other schemes. This error is
completely dispersive, and the solutions are highly ostcitly for all methods. The skew split schemes, D08SS
and DO8CS, break down with negative pressure at around t#feThis does not necessarily mean that they
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Fig. 1 Vortex convection. Norm of error vs. time for DOSES (blue&SS (red), DOSEC (black), D08 (green), and DO8CS (light
blue). Inviscid computation.

are unstable. They might be accurate for longer times on adiig: The entropy split scheme, DO8ES, has the
best performance, but it will eventually also reach a stdtens all accuracy has disappeared due to dispersive
errors. It appears that the accuracy of DOBEC is more seaditi the small scale oscillations that develop.
However, unlike DO8SS and DO8EC, the small oscillations atnmake DOSEC break down.
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Fig. 2 Vortex convection. Norm of distance to inviscid solution tisne for DOSES (blue), DO8SS (red), DOSEC (black), D08
(green), and DO8CS (light blue). Navier-Stokes equatioitb w = 0.001. Results are indistinguishable for all schemes except
DO08.

One reason for using entropy split and entropy conservatiiemes for the Navier-Stokes equations is that
all dissipation in the computed flow will be entirely due toypltal viscosity of the Navier-Stokes operator.
There is no numerical diffusion. Furthermore, the high éregcy modes that cause instabilities in the inviscid
case will be limited by the physical viscosity. Figure 2 disfs the norm of the difference between the inviscid
solution and the computed solution vs. time for a solutiorthef Navier-Stokes equations. The same vortex
convection problem as in Fig. 1 was solved, but with the addader-Stokes viscosity operator with a constant
viscosity coefficieny = 0.001 and heat conduction corresponding to the Prandtl numbér. Ufre viscosity



was discretized by eighth order centered difference opesal he viscosity: = 0.001 is far from resolved
on the grid, which hag\z = 0.25. The parabolic time step restriction is not activated. Ewéth this small
dissipation, all methods, except D08, are well behavedrdiseno accumulation of high frequency errors. The
curves in Fig. 2 are indistinguishable. The viscosity is laoje enough to prevent the blow-up of the pure
centered scheme. However, increasing the viscosipy o 0.01, which is also unresolved on the grid, gives
more or less identical results with all methods (resultspiotted), including the pure centered scheme.

In summary, the non-conservative entropy splitting anddberos et al. skew-symmetric split formulations
perform the best for this particular smooth flow. Howeverckas et al.’s formulation is conservative and it is
applicable to problems containing shock waves.
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